
British Informatics Olympiad Final
12–14 April, 2002

Sponsored by Lionhead Studios

Bubble Memory

Modern semiconductor memory consists of many tiny electronic circuits, each of which can be
on or off (i.e. storing a 0 or a 1). An alternative type of memory is bubble memory, which consists
of many tiny bubbles that can be moved around; each bubble also stores a 0 or a 1 (by means of an
electrical charge). Bubble memory has several advantages over modern memory; for example, bub-
bles can maintain their on/off value without power (i.e. it is non-volatile). Semiconductor memory
has its own advantages, such as high speed, which is why it is the currently used technology.

?>=<89:;/.-,()*+0

GF ED��?>=<89:;1oooo ?>=<89:;2oo ?>=<89:;3oo ?>=<89:;4oo ?>=<89:;5oo ?>=<89:;6oo

Bubble memory is read and written by moving the bubbles around the chip until the required
bubble is in the read/write position. In the above example there is a single path that the bubbles
can follow; the read/write position is marked with a double circle. Three operations can take place
on the example system: the marked element can be read, the marked element can be written or all
the bubbles can be simultaneously moved along the path. [At any one time each position holds a
single bubble.]

For example, to duplicate the contents of bubble 3 in bubble 2, eleven operations are required:
three rotations, one read, six more rotations then one write. After these operations, bubble 2 is in
position zero (marked with a double circle), bubble 3 is to its immediate right, etc...

Question 1.1
The number of operations required to read b bubbles depends on the required bubbles, their

order, current location and the total amount of memory. If the memory consists of 100 bubbles,
what is the largest number of operations required to read 5 different bubbles (in the given order)?
What is the smallest?

Question 1.2
Outline an algorithm that, given the bubble currently in the read / write position and the

required bubble, calculates and applies the necessary operations.

We can decrease the number of operations required to access bubbles by adding additional paths
for the bubbles to take. In the following example, two paths are shown for the data. [They are
shown on separate diagrams for clarity but they are linking the same locations on the chip.] This
bubble memory has four different types of operation: reading the marked element, writing the mark
element, rotating the bubbles along the first path and rotating the bubbles along the second path.?>=<89:;/.-,()*+0 //?>=<89:;1

((?>=<89:;2
**?>=<89:;3jj ?>=<89:;4hh ?>=<89:;5oo ?>=<89:;6

��

?>=<89:;/.-,()*+0
		 ?>=<89:;1 //?>=<89:;2

((?>=<89:;3
**?>=<89:;4jj ?>=<89:;5hh ?>=<89:;6oo

Recall from round one the in-riffle and out-riffle; in these shuffles the pack is split into two halves
which are then interleaved. The solid line path is equivalent to an in-riffle on the bubbles; similarly
the dotted line path is equivalent to an out-riffle. [We will denote an operation of the solid path
as a 1 and the dotted path as a 0.] The single path in the first diagram is equivalent to the break
(denoted b).

Question 1.3
In the above system, what is the effect of 101 on the bubbles?

Question 1.4
(a) In the above system, what is the largest number of moves that may be required to get a

bubble into the read / write position?
(b) What is the largest number of moves if there are 19 bubbles (linked with an in-riffle path

and an out-riffle path)?

For a combination of paths to be useful it is necessary to be able to move bubbles from any
location to the read / write position. We could pair the break path with any other path and still
have a useful combination. There are some paths which, if combined with the in-riffle path, do not
create useful combinations; for example, leaving location 6 isolated from the read / write position.

Question 1.5
In a memory with 7 locations, how many different paths can the in-riffle be combined with to

create useful combinations?

In the single path system it was only necessary to know which bubble was in the read / write
position to be able to deduce where the other bubbles were. If we allowed arbitrary combinations
of riffles in the two path system this would not be the case.

Question 1.6
(a) If arbitrary combinations of riffles were permitted, what additional information would you

require to deduce the positions of the other bubbles? Detailed calculations are not required.
(b) Why is this undesirable?

It is possible to show that, if there are 2n − 1 bubbles, applying S1 then S2 . . . then Sn (where
each Si is either a 1 or 0) will move the bubble in position p on the chip, to position

(p+ 2n−1.S1 + · · ·+ 20.Sn) mod (2n − 1)

[a mod b is equivalent to the remainder when a is divided by b.] In other words, by applying n riffle
operations we can get the required bubble in the read / write position and ensure the bubbles are
kept in order.

Question 1.7
Outline an algorithm for a memory with 2n − 1 bubbles that, given the bubble currently in the

read / write position and the required bubble, applies the necessary (riffle) path operations to get
the required bubble and keep the data ordered.

When accessing memory there are two different types of request. The first is random access
where the requested memory is not necessarily related to previously requested memory (and could
be anywhere). The second is sequential access where are sequence of adjacent memory locations (in
this case bubbles) are requested.

Question 1.8
How does your algorithm in 1.7 compare to the algorithm in 1.2 for random memory access?

How about sequential access? Justify briefly, for small and large memory sizes.

One possible way of increasing the performance for sequential access would be to combine the two
systems, creating an amalgamated system containing three paths. There are however manufacturing
overheads when increasing the number of paths, such as requiring better equipment, higher chip
densities and getting higher failure rates.

Question 1.9
Find a relationship between the three paths (b, 1 and 0) and hence show how a two path system

can be built which is suitable for random and sequential access.

Question 1.10
Suppose the memory size is 216− 1 bubbles. What is the largest number of operations that your

new system might require when retrieving a bubble?

Question 1.11
Are bubbles ever available, at the read / write position, before a sequence of operations is

complete? If bubbles were accessible, would there be any advantage in using them?

Question 1.12
The shuffle based bubble memories that we have discussed rely on the memory having 2n − 1

locations. It is more usual (and useful) to have memories with 2n locations. How would you adapt
the previous methods to 2n locations?

One advantage of the single path bubble memory, compared to the multiple path systems we have
considered, is that it can be built flat without any of the paths crossing over each other. Another
‘multiple path’ approach, which keeps the same property, is to have several single paths, each of
which stores different sections of memory. Such a system also requires an additional mechanism for
getting the bubbles between the single paths and the read / write position.

Question 1.13
Briefly outline a suitable mechanism for moving bubbles from the single paths to the read /

write position. Mention the hardware design, movement algorithm and comment on how you would
distribute the bubbles amongst the single paths.

