
British Informatics Olympiad Final
3{5 April, 1998

Sponsored by Data Connection

Making a Di�erence

The UNIX utility diff compares two �les, and outputs a list of changes nec-
essary for transforming the �rst into the second. For this question we will look
at a possible way of implementing a di�erence program; one that works with �les
containing one word per line.

There are three types of transformation : appending, deleting and changing. An
output of the form \n1 a n2,n3" means we append lines n2 to n3 of the second �le,
after line n1 of the �rst �le. The output \n1,n2 c n3,n4" means change lines n1 to
n2 of the �rst �le to lines n3 to n4 of the second. Finally, \n1,n2 d n3" tells us to
delete lines n1 to n2 in the �rst �le. Each of these instructions are followed by the
lines that are a�ected in each �le; a `<' indicating a line from the �rst �le, and a
`>' indicating a line from the second.

For example, if we compare the following two �les

she the

sells sea

sea shells

shells she

on sells

the are

sea sea

shore shells

I'm

sure

a possible response would be :

0a1,3

> the

> sea

> shells

2a6,6

> are

5,8c9,10

< on

< the

< sea

< shore

---

> I'm

> sure

Question 1.1

Calculate valid di�erence outputs for the following pairs of �les (if written with
one word on each line) :

(a) it was the best of times it was the worst of times

it was the age of wisdom it was the age of foolishness

(b) permuting this sentence may render it meaningless

may it sentence permuting render this meaningless



Question 1.2

There may be many ways of transforming one �le into another. The method
we choose might depend on several criterion; for example we may wish to minimize
the number of lines that are transformed, or try to keep large blocks of lines intact.
Suppose we are are transforming an n line �le into a (di�erent) m line one. What
is the minimum number of transformations we can use? What is the maximum
number?

Question 1.3

Suppose we have run our program and calculated how to transform �le1 into
�le2. How can we use this information to generate a transformation from �le2 to
�le1, and hence why does the deletion transformation have the format \n1,n2 d

n3"?

2. Longest common subsequence

A subsequence of a sequence X is just X with some of the elements, possibly
none, removed. Suppose we have two sequences X and Y ; Z is a common subse-

quence of X and Y if it is a subsequence of both of them. If there does not exist
a common subsequence with more elements in it, we say Z is a longest common

subsequence (LCS). [Note that there may be more than one.] Given X and Y we
may be interested in determining a longest common subsequence.

Question 2.1

(a)What is the largest common subsequence of < B; I;O;B; I; O;B; I; O > and
< I;O; I; B; I; O; I; O; I >.

(b) Give a pair a sequences which have more than one LCS, along with example
LCSs.

Question 2.2

A naive algorithm for calculating an LCS would be to calculate all the subse-
quences of X , and check to see which are also subsequences of Y . Why would this
impractical for all but the smallest sequences?

We can recursively calculate an LCS of X and Y , by considering the LCSs of
pairs of pre�xes of X and Y . Let Xn be the sequence < x1; x2; : : : ; xn > and Ym
the sequence < y1; y2; : : : ; ym >. Furthermore let Zk =< z1; : : : ; zk > be any LCS
of Xn and Ym.

� If xn = ym, then zk = xn = ym and Zk�1 is an LCS of Xn�1 and Ym�1.

� If xn 6= ym, then if zk 6= xn, Zk must be an LCS of Xn�1 and Ym.

� If xn 6= ym, then if zk 6= ym, Zk must be an LCS of Xn and Ym�1.

Question 2.3

If xn 6= ym how does the length of the LCS of Xn and Ym relate to the LCS of
Xn�1 and Ym and the LCS of Xn and Ym�1.

Question 2.4

Suppose the X and Y are stored in the arrays X and Y. Using the above relation-
ships write a recursive procedure LCS Length which is called with the parameters
n and m, and returns the length of the LCS of Xn and Ym. [Indicate whether your
arrays begin at 0 or 1.]

The recursive procedure needs to call itself since we base our solution of the
problem, on the results of smaller problems. The aw with this approach is that
LCS Length may get called many times for the same values of n and m. For example



LCS Length(5,5) may need to look at LCS Length(4,5) and LCS Length(5,4),
both of which may need to look at LCS Length(4,4).

One way to prevent repeated calculation of the same problem would be to store
the results of the sub-problems we have solved. When we are asked to solve a
problem for the second time, all we need to do is recall this stored value. The
dynamic programming approach is to calculate the sub-problems in a di�erent order,
so that whenever we need the result of another problem we have already solved it.

The outline of a dynamic programming procedure, might look as follows :

for i := 0 to n do

for j := 0 to m do

lcsl[i,j] := \length of LCS of Xi and Yj"

This procedure builds up a table lcsl, where lcsl[i,j] contains the length of the
LCS of Xi and Xj . Observe that by the time we calculate lcsl[i,j] all the smaller
sub-problems have already been solved.

Question 2.5

Suppose we have calculated the table lcsl, and hence know the length of the
LCS. How can we use this information to �nd an actual LCS?

3. Creating a di�erence output

We will now return to the problem of �nding a transformation between two �les.
If we treat the individual words in the two �les as the elements of our sequences,
we can use our LCS algorithm to �nd sequences of words in common between the
two �les. The output from our algorithm might look something like

(i1; j1); (i2; j2); : : : ; (ik; jk)

where the ithn word in the �rst �le is the same as the jthn word in the second, and
both i1; : : : ; ik and j1; : : : ; jk are strictly increasing sequences. For example, if we
look back at original example, the output would be

(1; 4); (2; 5); (3; 7); (4; 8)

Of course, we are really interested in the parts of the �les that are not common. ie.

� words 1 to i1 � 1 in the �rst �le, compared with 1 to j1 � 1 in the second.

� words i1 + 1 to i2 � 1 in the �rst �le, compared with j1 + 1 to j2 � 1 in the
second.
...

� word ik +1 to the end of the �rst �le, compared with jk +1 to the end of the
second �le.

[NB \words x to y" where x > y, signi�es an empty sequence.]

Question 3

Suppose you have (from above) that \words n1 to n2 in the �rst �le have nothing
in common with words n3 to n4 in the second �le." When, and how, does this
convert to

(a) an `append' transformation?
(b) a `delete' transformation?
(c) a `change' transformation?


